Making Decisions

9

9 Making Decisions

9.1 Decision making agent
9.2 Preferences
9.3 Utilities
9.4 Decision networks
9.5 Sequential decision ${ }^{+}$
9.6 Multiagent systems*
9.7 Game theory

Decision making agent

```
def Decision-Theoretic-AgEnt(percept)
    persistent: belief-state, probabilistic beliefs about the current state of the world
        action, the agent's action
    Updated belief-state by decision-theoretic policy based on action and percept
    calculate outcome for actions
        given action descriptions and utility of current belief-state
    select action with highest expected utility
        given outcomes and utility information
    return action
```

Decision theories: an agent's choices

- Utility theory: worth or value
utility function - preference ordering over a choice set
- Game theory: strategic interaction between rational decisionmakers
Hint: AI \rightarrow Economy \rightarrow Computational economy

Making decisions under uncertainty

Suppose I believe the following:

$$
\begin{aligned}
P\left(A_{25} \text { gets me there on time } \mid \ldots\right) & =0.04 \\
P\left(A_{90} \text { gets me there on time } \mid \ldots\right) & =0.70 \\
P\left(A_{120} \text { gets me there on time } \mid \ldots\right) & =0.95 \\
P\left(A_{1440} \text { gets me there on time } \mid \ldots\right) & =0.9999
\end{aligned}
$$

Which action to choose?
Depends on my preferences for missing flight vs. airport cuisine, etc.
Utility theory is used to represent and infer preferences
Decision theory $=$ probability theory + utility theory

Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes

Lottery $L=[p, A ;(1-p), B]$

In general, a lottery (state) L with possible outcomes S_{1}, \cdots, S_{n} that occur with probabilities p_{1}, \cdots, p_{n}
$L=\left[p_{1}, S_{1} ; \cdots ; p_{n}, S_{n}\right]$
each outcome S_{i} of a lottery can be either an atomic state or another lottery

Preferences

Notation

$A \succ B$	A preferred to B
$A \sim B$	indifference between A and B
$A \succsim B$	B not preferred to A

Rational preferences
preferences of a rational agent must obey constraints
\Rightarrow behavior describable as maximization of expected utility

Axioms of preferences

Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

Continuity

$$
\bar{A} \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B
$$

Substitutability

$$
\begin{aligned}
& A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C] \\
& (A \succ B \Rightarrow[p, A ; 1-p, C] \succ[p, B ; 1-p, C])
\end{aligned}
$$

Monotonicity

$$
A \succ B \Rightarrow(p>q \Leftrightarrow[p, A ; 1-p, B] \succ[q, A ; 1-q, B])
$$

Decomposability

$$
[p, A ; 1-p,[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]
$$

Rational preferences

Violating the constraints leads to self-evident irrationality
E.g.: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has

Utilities

Preferences are captured by a utility function, $U(s)$ assigns a single number to express the desirability of a state

The expected utility of an action given the evidence, $E U(a \mid \mathbf{e})$ the average utility value of the outcomes, weighted by the probability that the outcome occurs

$$
U(a \mid \mathbf{e})=\Sigma_{s^{\prime}} P\left(\operatorname{RESULT}(a)=s^{\prime} \mid a, \mathbf{e}\right) U\left(s^{\prime}\right)
$$

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the axioms, there exists a real-valued function U s.t.

$$
\begin{aligned}
& U(A) \geq U(B) \quad \Leftrightarrow \quad A \succsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

Maximizing expected utility

MEU principle
Choose the action that maximizes expected utility

$$
a^{*}=\operatorname{argmax}_{a} E U(a \mid \mathbf{e})
$$

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
E.g., a lookup table for perfect tic-tac-toe

Utility function

Utility map states (lotteries) to real numbers. Which numbers?
Standard approach to the assessment of human utilities compare a given state A to a standard lottery L_{p} that has
"best possible prize" u_{\top} with probability p
"worst possible catastrophe" u_{\perp} with probability $(1-p)$ adjust lottery probability p until $A \sim L_{p}$

Say, pay a monetary value on life

Utility scales

Normalized utilities: $u_{\top}=1.0, u_{\perp}=0.0$
Micromorts (micro-mortality): one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk
Note: behavior is invariant w.r.t. + ve linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

Money

Money does not behave as a utility function
Given a lottery L with expected monetary value $E M V(L)$, usually $U(L)<U(E M V(L))$, i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p, \$ M ;(1-p), \$ 0]$ for large M ?

Typical empirical data, extrapolated with risk-prone behavior

Multiattribute utility

How can we handle utility functions of many variables $X_{1} \ldots X_{n}$? E.g., what is U (Deaths, Noise, Cost)?

How can complex utility functions be assessed from preference behaviour?

Idea 1: identify conditions under which decisions can be made without complete identification of $U\left(x_{1}, \ldots, x_{n}\right)$

Idea 2: identify various types of independence in preferences and derive consequent canonical forms for $U\left(x_{1}, \ldots, x_{n}\right)$

Strict dominance

Typically define attributes such that U is monotonic in each
Strict dominance: choice B strictly dominates choice A iff $\forall i \quad X_{i}(B) \geq X_{i}(A) \quad$ (and hence $U(B) \geq U(A)$)

Uncertain attributes

Strict dominance seldom holds in practice

Stochastic dominance

Distribution p_{1} stochastically dominates distribution p_{2} iff

$$
\forall t \int_{-\infty}^{t} p_{1}(x) d x \leq \int_{-\infty}^{t} p_{2}(t) d t
$$

If U is monotonic in x, then A_{1} with outcome distribution p_{1} stochastically dominates A_{2} with outcome distribution p_{2} :

$$
\int_{-\infty}^{\infty} p_{1}(x) U(x) d x \geq \int_{-\infty}^{\infty} p_{2}(x) U(x) d x
$$

Multiattribute: stochastic dominance on all attributes \Rightarrow optimal

Stochastic dominance

Stochastic dominance can often be determined without exact distributions using qualitative reasoning
E.g., construction cost increases with distance from city S_{1} is closer to the city than S_{2}
$\Rightarrow S_{1}$ stochastically dominates S_{2} on cost
E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information
$X \xrightarrow{+} Y(X$ positively influences $Y)$ means that
For every value z of Y^{\prime} 's other parents Z
$\forall x_{1}, x_{2} \quad x_{1} \geq x_{2} \Rightarrow \mathbf{P}\left(Y \mid x_{1}, \mathbf{z}\right)$ stochastically dominates
$\mathbf{P}\left(Y \mid x_{2}, \mathbf{z}\right)$

Label the arcs + or -

Preference structure: deterministic

X_{1} and X_{2} preferentially independent of X_{3} iff preference between $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $\left\langle x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right\rangle$ does not depend on x_{3}
E.g., \langle Noise, Cost, Safety〉:
$\langle 20,000$ suffer, $\$ 4.6$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$ vs. $\langle 70,000$ suffer, $\$ 4.2$ billion, 0.06 deaths $/ \mathrm{mpm}\rangle$

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I of its complement: mutual P.I..

Theorem (Debreu, 1960): mutual P.I.
$\Rightarrow \exists$ additive value function

$$
V(S)=\sum_{i} V_{i}\left(X_{i}(S)\right)
$$

Hence assess n single-attribute functions; often a good approximation

Preference structure: stochastic

Need to consider preferences over lotteries X is utility-independent of Y iff preferences over lotteries in \mathbf{X} do not depend on \mathbf{y}

Mutual U.I.: each subset is U.I of its complement
$\Rightarrow \exists$ multiplicative utility function:
$U=k_{1} U_{1}+k_{2} U_{2}+k_{3} U_{3}$
$+k_{1} k_{2} U_{1} U_{2}+k_{2} k_{3} U_{2} U_{3}+k_{3} k_{1} U_{3} U_{1}$
$+k_{1} k_{2} k_{3} U_{1} U_{2} U_{3}$
Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Decision networks

Add action nodes (rectangles) and utility nodes to belief networks to enable rational decision making

Decision networks algorithm

1. Set the evidence variables for the current state
2. For each possible value of the decision node
(a) Set the decision node to that value
(b) Calculate the posterior probabilities for the parent nodes of the utility node
using a standard probabilistic inference algorithm
(c) Calculate the resulting utility for the action
3. Return MEU action

The value of information

Idea: compute the value of acquiring each possible piece of evidence Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is $k / 2$
"Consultant" offers accurate survey of A. Fair price?
Solution: compute the expected value of information
$=$ expected value of best action given the information minus expected value of best action without information
Survey may say "oil in A " or "no oil in A ", prob. 0.5 each (given!)
$=[0.5 \times$ value of "buy A " given "oil in A "
$+0.5 \times$ value of "buy B^{\prime} given "no oil in A^{\prime}]
-0
$=(0.5 \times k / 2)+(0.5 \times k / 2)-0=k / 2$

General formula

Current evidence E, current best action α Possible action outcomes S_{i}, potential new evidence E_{j}

$$
E U(\alpha \mid E)=\max _{a} \Sigma_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a\right)
$$

Suppose we knew $E_{j}=e_{j k}$, then we would choose $\alpha_{e_{j k}}$ s.t.

$$
E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a, E_{j}=e_{j k}\right)
$$

E_{j} is a random variable whose value is currently unknown
\Rightarrow must compute expected gain over all possible values:
$\operatorname{VP} I_{E}\left(E_{j}\right)=\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)$
$(\mathrm{VPI}=$ value of perfect information $)$

Properties of VPI

Nonnegative - in expectation, not post hoc

$$
\forall j, E \quad V P I_{E}\left(E_{j}\right) \geq 0
$$

Nonadditive—consider, e.g., obtaining E_{j} twice

$$
V P I_{E}\left(E_{j}, E_{k}\right) \neq V P I_{E}\left(E_{j}\right)+V P I_{E}\left(E_{k}\right)
$$

Order-independent
$V P I_{E}\left(E_{j}, E_{k}\right)=V P I_{E}\left(E_{j}\right)+V P I_{E, E_{j}}\left(E_{k}\right)=V P I_{E}\left(E_{k}\right)+V P I_{E, E_{k}}\left(E_{j}\right)$

Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal \Rightarrow evidence-gathering becomes a sequential decision problem

Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

Information-gathering agent

```
def Information-Gathering-AgEnt( percept)
    persistent: D, a decision network
    integrate percept into D
    j\leftarrow the value that maximizes }\operatorname{VPI}(\mp@subsup{E}{j}{})/\operatorname{Cost}(\mp@subsup{E}{j}{}
    if VPI}(\mp@subsup{E}{j}{})>\operatorname{Cost}(\mp@subsup{E}{j}{}
        then return REQUEST( }\mp@subsup{E}{j}{}
    else return the best action from D
```


Sequential decision ${ }^{+}$

Sequential decision problems: utilities depend on a sequence of decisions; incorporating utilities, uncertainty and sensing; including search and planning as special cases

MDP (Markov decision process): observable, stochastic environment with a Markovian transition model and additive rewards

MDP

Say, $[U p, U p$, Right, Right, Right $]$ with probability $0.8^{5}=0.32768$
States $s \in S$, actions $a \in A$
Model $T\left(s, a, s^{\prime}\right) \equiv P\left(s^{\prime} \mid s, a\right)=$ probability that a in s leads to s^{\prime} Reward function $R(s)$ (or $R(s, a), R\left(s, a, s^{\prime}\right)$)
$= \begin{cases}-0.04 & \text { (small penalty) for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}$

Solving MDPs

In search problems, the solution is to find an optimal sequence
In MDPs, the solution is to find an optimal policy $\pi(s)$
i.e., the best action for every possible state s
(because one can't predict where one will end up)
The optimal policy maximizes (say) the expected sum of rewards
Optimal policy when state penalty $R(s)$ (r in the picture) is -0.04 :

Risk and reward

Two optimal policies in state (3,1), and policies for four different ranges of r

Utility of state sequences

Need to understand preferences between sequences of states
Typically consider stationary preferences on reward sequences
$\left[r, r_{0}, r_{1}, r_{2}, \ldots\right] \succ\left[r, r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots\right] \Leftrightarrow\left[r_{0}, r_{1}, r_{2}, \ldots\right] \succ\left[r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots\right]$
Theorem: there are only two ways to combine rewards over time

1) Additive utility function

$$
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+R\left(s_{1}\right)+R\left(s_{2}\right)+\cdots
$$

2) Discounted utility function
$U\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\cdots$ where γ is the discount factor (describing the preference of an agent for current rewards over future rewards)

Utility of states

Utility of a state (aka. its value)

$$
U(s)=\frac{\text { expected (discounted) sum of rewards (until termination) }}{\text { assuming optimal actions }}
$$

Given the utilities of the states, choosing the best action is just MEU maximize the expected utility of the immediate successors

3	0.8516	0.9078	0.9578	$\boxed{+1}$
2	0.8016		0.7003	$\boxed{-1}$
1	0.7453	0.6953	0.6514	0.4279

$\gamma=1$, higher for states closer to the exit +1

Utility of states\#

Problem: infinite lifetimes \rightarrow additive utilities are infinite

1) Finite horizon: termination at a fixed time T
\rightarrow nonstationary policy: $\pi(s)$ depends on time left
2) Absorbing state(s): w/ prob. 1, agent eventually "dies" for any π
\rightarrow expected utility of every state is finite
3) Discounting: assuming $\gamma<1, R(s) \leq R_{\max }$,

$$
U\left(\left[s_{0}, \ldots s_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \leq R_{\max } /(1-\gamma)
$$

Smaller $\gamma \Rightarrow$ shorter horizon
4) Maximize system gain = average reward per time step

Theorem: optimal policy has constant gain after initial transient E.g., taxi driver's daily scheme cruising for passengers

Bellman equation

Definition of the utility of states leads to a simple relationship among utilities of neighboring states
expected sum of rewards
= current reward
$+\gamma \times$ expected sum of rewards after taking best action
Bellman equation (1957)

$$
\begin{array}{cc}
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} U\left(s^{\prime}\right) T\left(s, a, s^{\prime}\right) & \\
U(1,1)=-0.04 & \text { up } \\
+\gamma \max \{0.8 U(1,2)+0.1 U(2,1)+0.1 U(1,1), & \text { left } \\
0.9 U(1,1)+0.1 U(1,2) & \text { down } \\
0.9 U(1,1)+0.1 U(2,1) & \text { right }
\end{array}
$$

One equation per state $=n$ nonlinear equations in n unknowns

Value iteration algorithm

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman equation

Everywhere locally consistent \Rightarrow global optimality Repeat for every s simultaneously until "no change" - Bellman update

$$
U_{i+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma U_{i}\left(s^{\prime}\right)\right]
$$

Value iteration algorithm\#

```
def Value-Iteration(mdp,\epsilon)
    inputs: mdp, an MDP with states S, actions A(s), transition
    model P( s}|\mp@code{s,a), rewards R(s,a,\mp@subsup{s}{}{\prime})\mathrm{ ,discount }\gamma
            \epsilon \text { , the maximum error allowed in the utility of any state}
    local variables: U, U', vectors of utilities for states in S, initially zero
                                    \delta, the maximum relative change in the utility of any state
    repeat
        U\leftarrowU';\delta\leftarrow0
        for each state s in S do
            U'[s]}\leftarrow\mp@subsup{\operatorname{max}}{a\inA(s)}{}\operatorname{BELLMAN-VALUE}(mdp,s,a,U
    until }\delta\leq\epsilon(1-\gamma)/
    return U
```


Convergence*

Define the max-norm $\|U\|=\max _{s}|U(s)|$ so $\|U-V\|=$ maximum difference between U and V

Let U^{t} and U^{t+1} be successive approximations to the true utility U
Theorem: For any two approximations U^{t} and V^{t}

$$
\left\|U^{t+1}-V^{t+1}\right\| \leq \gamma\left\|U^{t}-V^{t}\right\|
$$

I.e., any distinct approximations must get closer to each other so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution

Theorem: if $\left\|U^{t+1}-U^{t}\right\|<\epsilon$, then $\left\|U^{t+1}-U\right\|<2 \epsilon \gamma /(1-\gamma)$ l.e., once the change in U^{t} becomes small, we are almost done.

MEU policy using U^{t} may be optimal long before convergence of values

Policy iteration

Howard (1960): search for an optimal policy and utility values simultaneously

Algorithm
$\pi \leftarrow$ an arbitrary initial policy repeat until no change in π compute utilities given π update π as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed π (value determination)

$$
U(s)=R(s)+\gamma \Sigma_{s^{\prime}} U\left(s^{\prime}\right) T\left(s, \pi(s), s^{\prime}\right), \quad \text { for all } s
$$

i.e., n simultaneous linear equations in n unknowns, solve in $O\left(n^{3}\right)$

Note: Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment

Bandit problems ${ }^{+\#}$

One-armed bandit (slot machine): a gambler can insert a coin, pull the lever, and collect the winnings (if any) n-armed (multi-armed) bandit: behind each of n (independent) lever is a fixed but unknown probability distribution of winnings Bernoulli bandit: each of n-armed produces a reward of 0 or 1 with a fixed but unknown probability \Leftarrow formal model of sequential decision
E.g., deciding which of n possible new treatments to try to cure a disease

The tradeoff between exploitation (to get the machine the highest expected payoff) and exploration (to get more information about the expected payoffs of the other machines)

Markov reward process

Defined each arm M_{i} as a Markov reward process (MRP): a special MDP with only one possible action a_{i}

- states S_{i}
- transition model $P_{i}\left(s^{\prime} \mid s, a_{i}\right)$
- reward $R_{i}\left(s, a_{i}, s^{\prime}\right)$

The arm defines a distribution over sequences of rewards $R_{i, 0}$, $R_{i, 1}, \ldots$ (random variables)

Example: two-arms bandit

Consider two arms M, M_{1}, the discount factor $\gamma=0.5$. Pulling arms yield the sequences of rewards

```
M: 0, 2, 0, 7.2, 0, 0, ...
M1:1,1,1,1, 1, 1, ...
```

Utility (total discounted reward) for each arm

$$
\begin{aligned}
& U(M)=(1.0 \times 0)+(0.5 \times 2)+\left(0.5^{2} \times 0\right)+\left(0.5^{3} \times 7.2\right)=1.9 \\
& U\left(M_{1}\right)=\Sigma_{t=0}^{\infty} 0.5^{t}=2.0
\end{aligned}
$$

Seem like the best choice is to go with M_{1}. But starting with M and then switching to M_{1} after the fourth reward gives the sequence $S=0,2,0,7.2,1,1,1,1,1,1, \ldots$
$U(S)=(1.0 \times 0)+(0.5 \times 2)+\left(0.5^{2} \times 0\right)+\left(0.5^{3} \times 7.2\right)+\Sigma_{t=4}^{\infty} 0.5^{t}=$ 2.025

The strategy S is optimal: all other switching times give less reward

One-arm bandit

Consider two arms M, M_{λ}, the discount factor γ, yielding the sequences of rewards
$M: R_{0}, R_{1}, R_{2}, \ldots$
$M_{\lambda}: \lambda, \lambda, \lambda, \ldots$ (constant)
Equivalent to one arm M that produces rewards $R_{0}, R_{1}, R_{2}, \ldots$ and cost λ for each pull

- pulling arm M is equivalent to not pulling M_{λ}, so it gives up a reward of λ each time

Pull the first arm T times $(0,1, \ldots, T-1$, the stopping time is $T)$
An optimal strategy is to run arm M up to time T and then switches to M_{λ} for the rest of time

- if $T=0$ then choosing M_{λ} immediately
- if $T=\infty$ then never choosing M_{λ}

Gittins index

Consider λ s.t. an optimal strategy is exactly indifferent (tipping point) between
(a) running up to the best possible stopping time and then switching to M_{λ} forever, and
(b) choosing M_{λ} immediately

$$
\max _{T>0} E\left[\left(\Sigma_{t=0}^{T-1} \gamma^{t} R_{t}\right)+\Sigma_{t=T}^{\infty} \gamma^{t} \lambda\right]=\Sigma_{t=0}^{\infty} \gamma^{t} \lambda \Longleftrightarrow
$$

Theorem $\lambda=\max _{T>0} \frac{E\left(\sum_{t=0}^{T-1} \gamma^{t} R_{t}\right)}{E\left(\sum_{t=0}^{T-1} \gamma^{t}\right)} \quad$ (Gittins index of M)
Optimal policy for any bandit problem: pull the arm that has the highest Gittins index, then update the Gittins indices

- computing the first Gittins index $O(n)$ time
(index of arm depends only on the properties of that arm)
- computing each decision after the first one $O(n)$
(Gittins indices of arms that are not selected remain unchanged)

Gittins index

T	1	2	3	4	5	6
R_{t}	0	2	0	7.2	0	0
$\sum \gamma^{t} R_{t}$	0.0	1.0	1.0	1.9	1.9	1.9
$\sum \gamma^{t}$	1.0	1.5	1.75	1.875	1.9375	1.9687
ratio	0.0	0.6667	0.5714	1.0133	0.9806	0.9651

For $0<\lambda \leq 1.0133$, the optimal policy collects the first four rewards from M and then switches to M_{λ}
For $\lambda>1.0133$, the optimal policy always chooses M_{λ}
Hint: Approximately optimal bandit policies are needed for more realistic problems

Gittins index

Consider each arm M of n-armed bandit at each state s, the agent has two choices
either continue with as before, or quit and receive an infinite sequence of λ-rewards
\Rightarrow turn M into an MDP
optimal policy is just the optimal stopping rule for M equal to the value of an infinite sequence of λ-rewards
i.e., $\lambda /(1-\gamma)-\lambda$ unknown
\Leftarrow restart MDP
at the tipping point, the choice to get an infinite sequence of λ-rewards $=$ the choice to go back and restart from its initial state s, a new MDP M^{s}
solving M^{s} by any of the MDP algorithms, say value iteration, a value of 2.0266 for the start state

$$
\text { Have } \lambda=2.0266 \cdot(1-\gamma)=1.0133 \text { as before }
$$

POMDP*

POMDP (partially observable MDP has an observation model $O(s, e)$ defining the probability that the agent obtains evidence e when in state s

Agent does not know which state it is in
\rightarrow makes no sense to talk about policy $\pi(s)$
Theorem (Astrom, 1965): the optimal policy in a POMDP is a function $\pi(b)$, where b is the belief state (probability distribution over states)

Can convert a POMDP into an MDP in belief-state space, where $T\left(b, a, b^{\prime}\right)$ is the probability that the new belief state is b^{\prime} given that the current belief state is b and the agent does a l.e., essentially a filtering update step

POMDP

Solutions automatically include information-gathering behavior
If there are n states, b is an n-dimensional real-valued vector \rightarrow solving POMDPs is very (actually, PSPACE-) hard

The real world is a POMDP (with initially unknown T and O)

Decision theoretic planning*

Planner designed in terms of probabilities and utilities in the decision networks

- support a computationally tractable inference about plans and partial plans
- numeric values to individual goals, but measures lack any precise meaning

Using decision-theoretic planning allows designers to judge the effectiveness of the planning system

- specify a utility function over the entire domain and rank the plan results by desirability
- modular representations that separately specify preference information so as to allow a dynamic combination of relevant factors

Multiagent systems*

Multiagent systems (MAS): the environment contains multiple actors

- Multiagent planning
- Multiagent decision making
- Game theory

Cooperation and coordination

- Adopt a convention before engaging in joint activity
- - a convention is any constraint on the selection of joint plans
- Otherwise, agents can use communication to achieve common knowledge of a feasible joint plan

Multiagent planning

Issue: concurrency - the plans of each agent may be executed simultaneously
agents take into account the way in which their own actions interact with the actions of other agents

Interleaved execution: the order of actions in the respective plans will be preserved

True concurrency: not a full serialized ordering of the actions, leave them partially ordered

Synchronization: there is a global clock that each agent has access to
concurrent constraint stating which actions must (not) be executed concurrently

Multiagent decision making

Benevolent agent assumption: one decision maker plans for the other agents, and tells them what to do

- require actors to synchronize their actions

Multiple decision-makers: the other actors (counterparts) are also decision makers

- they each have preferences and choose and execute their own plan
- all pursuing a common goal

Coordination: they are all pulling in the same direction

- the decision makers each pursue to the best of their abilities
\Leftarrow game theory

Game theory

Recall: Games as adversarial search

the solution is a strategy
specifying a move for every opponent reply, with limited resources
Game theory: decisions making with multiple agents in uncertain environments
the solution is a policy (strategy profile) in which each player adopts a rational strategy

	deterministic
chance	
perfect information	$\begin{array}{l}\text { chess, checkers, } \\ \text { go, othello }\end{array}$
imperfect information	$\begin{array}{l}\text { backgammon } \\ \text { monopoly }\end{array}$

nuclear war\end{array}\right]\)

A brief history of game theory\#

- Competitive and cooperative human interactions (Huygens, Leibniz, 17BC)
- Equilibrium (Cournot 1838)
- Perfect play (Zermelo, 1913)
- Zero-sum game (Von Neumann, 1928)
- Theory of Games and Economic Behavior (Von Neumann 1944)
- Nash equilibrium (non-zero-sum games) (Nash 1950) (the 1994 Nobel Memorial Prize in Economics)
- Mechanism design theory (auctions) (Hurwicz 1973, along with Maskin, and Myerson) (the 2007 Nobel Memorial Prize in Economics)

Trading Agents Competition (TAC) (since 2001)

Prisoner's dilemma

Two burglars, Alice and Bob, are arrested and imprisoned. Each prisoner is in solitary confinement with no means of communicating with the other. A prosecutor lacks sufficient evidence to convict the pair on the principal charge, and offers each a deal: if you testify against your partner as the leader of a burglary ring, you'll go free for being the cooperative one, while your partner will serve 10 years in prison. However, if you both testify against each other, you'll both get 5 years. Alice and Bob also know that if both refuse to testify they will serve only 1 year each for the lesser charge of possessing stolen property
should they testify or refuse??

Prisoner's dilemma

Single move game

- players: A, B
- actions: testify, refuse
- payoff (function): utility to each player for each combination of actions by all the players
- for single-move games: payoff matrix (strategic form)
- A strategy profile is an assignment of a strategy to each player
- - pure strategy - deterministic

	Alice :testify	Alice :refuse
Bob :testify	$A=-5, \mathrm{~B}=-5$	$\mathrm{~A}=-10, \mathrm{~B}=0$
Bob:refuse	$\mathrm{A}=0, \mathrm{~B}=-10$	$\mathrm{~A}=-1, \mathrm{~B}=-1$

should they testify or refuse??

Dominant strategy

A dominant strategy is a strategy that dominates all others
a strategy s for player p strongly dominates strategy s^{\prime} if the outcome for s is better for p than the outcome for s^{\prime}, for every choice of strategies by the other player(s)
a strategy s weakly dominates s^{\prime} if s is better than s^{\prime} on at least one strategy profile and no worse on any other

Note: it is rational to play a dominated strategy, and irrational not to play a dominant strategy if one exists

- being rational, Alice chooses the dominant strategy
- being clever and rational, Alice knows: Bob's dominant strategy is also to testify

Equilibrium

An outcome is Pareto optimal if there is no other outcome that all players would prefer

An outcome is Pareto dominated by another outcome if all players would prefer the other outcome
e.g., (testify,testify) is Pareto dominated by $(-1,-1)$ outcome of (refuse, refuse)

A strategy profile forms an equilibrium if no player can benefit by switching strategies, given that every other player sticks with the same strategy

- local optimum in the policy space

Dominant strategy equilibrium: the combination of those strategies, when each player has a dominant strategy

Nash equilibrium

Nash equilibrium (NE) theorem: every game has at least one equilibrium
E.g., a dominant strategy equilibrium is a Nash equilibrium (in special case, the converse does not hold - Why??)

NE is a necessary condition for a solution

- it is not always a sufficient condition

In the simple case, playing NE guarantees that the player will not win in expectation

In complex games, determining how to tie against an NE may be difficult

If the opponent ever chooses suboptimal actions, then playing NE will result in victory in expectation

Zero-sum games

Two-players general-sum game is represented by two payoff matrices $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{A}=\left[b_{i j}\right]$
if $a_{i j}=-b_{i j}$, called zero-sum game
(games in which the sum of the payoffs is always zero)
Mixed strategy - a randomized policy that selects actions according to a probability distribution

Maximin algorithm: a method for finding the optimal mixed strategy for two-player, zero-sum games

- apply the standard minimax algorithm

Maximin equilibrium of the game, and it is an NE
von Neumann zero-sum theorem: every two-player zero-sum game has a maximin equilibrium when you allow mixed strategies

NE in a zero-sum game is maximin for both players

Algorithms for finding Nash Equilibria

1. Input: a support profile
2. Enumerate all possible subsets of actions that might form mixed strategies
3. For each strategy profile enumerated in (2), check to see if it is an equilibrium

- Solving a set of equations and inequalities. For two players these equations are linear (and can be solved with basic linear programming); for n-players they are nonlinear

4. Output: an NE

Note: polynomial-time algorithms exist for special classes, such as two-player zero-sum games (three or more players NP-hard). For two-player non-zero-sum games, no polynomial-time (approximate) algorithm is known for finding an NE (PPAD-complete)

Other games*

Repeated games: players face the same choice repeatedly, but each time with knowledge of the history of all players? previous choices
E.g., the repeated version of the prisoner's dilemma

Sequential games: games consist of a sequence of turns that need not be all the same

- can be represented by a game tree (extensive form)
- add a distinguished player, chance, to represent stochastic games, specified as a probability distribution over actions

Bayes-Nash equilibrium: an equilibrium w.r.t. a player's prior probability distribution over the other players' strategies

Consider the other players are less than fully rational
Now, the most complete representations: partially observable, multiagent, stochastic, sequential, dynamic environments

Regret minimization*

Regret measures as the value of the difference between a made decision and the optimal decision
the regret for a sequence of strategies s_{a} consisting of always choosing action a would be, where T is the number of iterations

$$
r^{T}\left(s_{a}\right)=\sum_{t=1}^{T}\left(v^{t}(a)-v^{t}\right)
$$

For an algorithm to be no-regret, it must choose strategies in a way that guarantees that the reget value grows sublinearly for the optimal strategies

Counterfactual regret minimization*

Counterfactual regret minimization (CFR) for sequential games independently minimizes regret in each information set (state space)

- Vanilla CFR requires full traversals of the game tree, Monte Carlo CFR (MCCFR) needs only a portion of the tree to be traversed
- Regret-based pruning (RBP) prunes negative-regret actions from the tree traversal to speed it up

Variants of CFR (such as discounted or linear CFR) are the leading equilibrium-finding algorithm for imperfect-information games

Regret matching*

Minimax regret (i.e., minimax applied to regret) is to minimize the worst-case regret
Regret matching (RM) is a no-regret learning algorithm - the prob of an action is proportional to the positive regret on that action on each iteration $t+1$, action $a \in A$ is selected according to probabilities

$$
\sigma^{t+1}(a)=\frac{r_{+}^{t}(a)}{\sum_{a^{\prime} \in A} r_{+}^{t}\left(a^{\prime}\right)}
$$

where $r_{+}^{t}(a)=\max \left\{0, r^{t}(a)\right\}$
Theorem: When both players in a two-player zero-sum game use a no-regret learning algorithm, the average of the strategies played over all iterations converges to an NE

Counterfactual regret minimization algorithm*

```
def CFR(h,i,t,\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{})// with chance sampling
    persistent:I, the information set containing history h
            A, the set of actions
            r,s,\sigma, the tables of regret,stratgy,profile
    \forall , r
    \forallI,\mp@subsup{s}{I}{}[a]\leftarrow0// Initialize cumulative strategy tables
    \sigma
    v\sigma}\leftarrow0 // Regret values for the profile 
    v
    if h is terminal then return }\mp@subsup{u}{i}{}(h
        else if }h\mathrm{ is a chance node then
            Sample a single outcome a~\mp@subsup{\sigma}{c}{}(h,a)
            return CFR (h.a,i,t,\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{})
```


Counterfactual regret minimization algorithm*

```
for \(a \in A(I)\) do
    if \(P(h)=1\) then
        \(v_{\sigma_{I \rightarrow a}}[a] \leftarrow \operatorname{CFR}\left(h . a, i, t, \sigma^{t}(I, a) \cdot \pi_{1}, \pi_{2}\right)\)
    else if \(P(h)=2\) then
        \(v_{\sigma_{I \rightarrow a}}[a] \leftarrow \operatorname{CFR}\left(h . a, i, t, \pi_{1}, \sigma^{t}(I, a) \cdot \pi_{2}\right)\)
    \(v_{\sigma} \leftarrow v_{\sigma}+\sigma^{t}(I, a) \cdot v_{\sigma_{I \rightarrow a}}[a]\)
if \(P(h)=i\) then
    for \(a \in A(I)\) do
            \(r_{I}[a] \leftarrow r_{I}[a]+\pi_{-i} \cdot\left(v_{\sigma_{I \rightarrow a}}[a]-v_{\sigma}\right)\)
            \(s_{I}[a] \leftarrow s_{I}[a]+\pi_{i} \cdot \sigma^{t}(I, a)\)
    \(\sigma^{t+1}(I) \leftarrow\) regret-matching values computed by regret table \(r_{I}\)
return \(v_{\sigma}\)
```


Example: Libratus

Recall: Imperfect information games
Porker: surpass human experts in the game of heads-up no-limit Texas hold'em, which has over 10^{160} decision points

Libratus: two-ply heads-up no-limit Texas hold'em poker

- Depended on game theory
- NE-finding algorithms based on CFR
- Information and action abstraction for similarity of subgame
- Did not depend on deep learning
- Except for Deep CFR (NN for computing CFR)
- Outperform deep learning-based DeepStack
- AlphaZero can not win Texas hold'em

ReBel (2020): achieved superhuman performance in heads-up nolimit in 2020, extended AlphaZero by Nash equilibrium (with knowledge)

Example: DeepNash*

Stratego: 10^{535} states, larger than Texas hold'em (10175 times larger than Go)

- actions with no obvious link between action and outcome
- can not be broken down into sub-problems as in poker
- impossible to use AlphaGo-like or Libratus-like algorithms
- challenge all existing search techniques as the search space becomes intractable

DeepNash used an evolutionary (equivalent to reinforcement learning) game theory, without search, via self-play

- got up to a human expert level

R-NaD (Regularised Nash Dynamics) algorithm: converge to an (approximate) ϵ-Nash equilibrium
implemented using a deep convolutional network

Auctions*

Auction: a mechanism design for selling some goods to members of a pool of bidders

- inverse game theory

Given that agents pick rational strategies, what game should we design? e.g., cheap airline tickets Ascending-bid (English auction)

1. The center starts by asking for a minimum (or reserve) bid
2. If some bidder is willing to pay that amount, then asks for some increment, and continues up from there
3. End when nobody is willing to bid anymore, then the last bidder wins the item
Auction design (e.g., efficiency) and implementation (algorithm) Inverse auction

Given that the center picks a rational strategy, what game should we design?

