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Decision making agent

def Decision-Theoretic-Agent(percept)

persistent: belief-state, probabilistic beliefs about the current state of the world

action, the agent’s action

Updated belief-state by decision-theoretic policy based on action and percept

calculate outcome for actions

given action descriptions and utility of current belief-state

select action with highest expected utility

given outcomes and utility information

return action

Decision theories: an agent’s choices
• Utility theory: worth or value

utility function – preference ordering over a choice set
• Game theory: strategic interaction between rational decision-

makers
Hint: AI → Economy → Computational economy
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = probability theory + utility theory
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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L = [p, A; (1− p), B]

L

p

1−p

A

B

In general, a lottery (state) L with possible outcomes S1, · · · , Sn that
occur with probabilities p1, · · · , pn

L = [p1, S1; · · · ; pn, Sn]
each outcome Si of a lottery can be either an atomic state or

another lottery
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Preferences

Notation
A ≻ B A preferred to B
A ∼ B indifference between A and B
A ≻∼ B B not preferred to A

Rational preferences
preferences of a rational agent must obey constraints
⇒ behavior describable as maximization of expected utility
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Axioms of preferences

Orderability
(A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

Transitivity
(A ≻ B) ∧ (B ≻ C)⇒ (A ≻ C)

Continuity
A ≻ B ≻ C ⇒ ∃ p [p, A; 1− p, C] ∼ B

Substitutability
A ∼ B ⇒ [p, A; 1− p, C] ∼ [p,B; 1− p, C]
(A ≻ B ⇒ [p, A; 1− p, C] ≻ [p,B; 1− p, C])

Monotonicity
A ≻ B ⇒ (p > q ⇔ [p, A; 1− p,B] ≻ [q, A; 1− q, B])

Decomposability
[p, A; 1−p, [q, B; 1−q, C]] ∼ [p, A; (1−p)q, B; (1−p)(1−q), C]
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Rational preferences

Violating the constraints leads to self-evident irrationality

E.g.: an agent with intransitive preferences can be induced to give
away all its money

If B ≻ C, then an agent who has
C would pay (say) 1 cent to get B

If A ≻ B, then an agent who has
B would pay (say) 1 cent to get A

If C ≻ A, then an agent who has
A would pay (say) 1 cent to get C

A

B C

1c 1c

1c
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Utilities

Preferences are captured by a utility function, U(s)
assigns a single number to express the desirability of a state

The expected utility of an action given the evidence, EU(a|e)
the average utility value of the outcomes, weighted by the prob-

ability that the outcome occurs
U(a|e) = Σs′P (Result(a) = s′|a, e)U(s′)

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the axioms, there exists a real-valued
function U s.t.

U(A) ≥ U(B) ⇔ A ≻∼ B
U([p1, S1; . . . ; pn, Sn]) = Σi piU(Si)
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Maximizing expected utility

MEU principle
Choose the action that maximizes expected utility
a∗ = argmaxaEU(a|e)

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe
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Utility function

Utility map states (lotteries) to real numbers. Which numbers?

Standard approach to the assessment of human utilities
compare a given state A to a standard lottery Lp that has

“best possible prize” u⊤ with probability p
“worst possible catastrophe” u⊥ with probability (1− p)

adjust lottery probability p until A ∼ Lp

L

0.999999

0.000001

continue as before

instant death

pay $30 ~

Say, pay a monetary value on life
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Utility scales

Normalized utilities: u⊤ = 1.0, u⊥ = 0.0

Micromorts (micro-mortality): one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation

U ′(x) = k1U(x) + k2 ,k1 > 0
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Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize
x and a lottery [p, $M ; (1− p), $0] for large M?

Typical empirical data, extrapolated with risk-prone behavior

+U

+$

−150,000 800,000

o

o
o

o
o

o
o o o o o o o o

o
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Multiattribute utility

How can we handle utility functions of many variables X1 . . . Xn?
E.g., what is U(Deaths,Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

Idea 1: identify conditions under which decisions can be made without
complete identification of U(x1, . . . , xn)

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(x1, . . . , xn)
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Strict dominance

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff
∀ i Xi(B) ≥ Xi(A) (and hence U(B) ≥ U(A))

1X  

2X  

A

BC

D

1X  

2X  

A

B

C

This region
dominates A

Deterministic attributes Uncertain attributes

Strict dominance seldom holds in practice
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Stochastic dominance
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Distribution p1 stochastically dominates distribution p2 iff
∀ t

∫ t
−∞ p1(x)dx ≤

∫ t
−∞ p2(t)dt

If U is monotonic in x, then A1 with outcome distribution p1
stochastically dominates A2 with outcome distribution p2:

∫ ∞
−∞ p1(x)U(x)dx ≥

∫ ∞
−∞ p2(x)U(x)dx

Multiattribute: stochastic dominance on all attributes ⇒ optimal
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Stochastic dominance

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S1 is closer to the city than S2

⇒ S1 stochastically dominates S2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information
X +−→ Y (X positively influences Y ) means that
For every value z of Y ’s other parents Z
∀ x1, x2 x1 ≥ x2 ⇒ P(Y |x1, z) stochastically dominates

P(Y |x2, z)
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Label the arcs + or –

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality

Antilock

Airbag CarValue HomeBase AntiTheft

Theft

OwnDamage

PropertyCostLiabilityCost
MedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Preference structure: deterministic

X1 and X2 preferentially independent of X3 iff
preference between 〈x1, x2, x3〉 and 〈x

′
1, x
′
2, x3〉

does not depend on x3
E.g., 〈Noise, Cost, Safety〉:
〈20,000 suffer, $4.6 billion, 0.06 deaths/mpm〉 vs.
〈70,000 suffer, $4.2 billion, 0.06 deaths/mpm〉

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its
complement, then every subset of attributes is P.I of its complement:
mutual P.I..

Theorem (Debreu, 1960): mutual P.I.
⇒ ∃ additive value function

V (S) = ΣiVi(Xi(S))

Hence assess n single-attribute functions; often a good approximation
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Preference structure: stochastic

Need to consider preferences over lotteries
X is utility-independent of Y iff

preferences over lotteries in X do not depend on y

Mutual U.I.: each subset is U.I of its complement
⇒ ∃ multiplicative utility function:

U = k1U1 + k2U2 + k3U3

+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1

+ k1k2k3U1U2U3

Routine procedures and software packages for generating preference
tests to identify various canonical families of utility functions
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Decision networks

Add action nodes (rectangles) and utility nodes to belief networks
to enable rational decision making

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic
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Decision networks algorithm

1. Set the evidence variables for the current state

2. For each possible value of the decision node
(a) Set the decision node to that value
(b) Calculate the posterior probabilities for the parent nodes of

the utility node
using a standard probabilistic inference algorithm
(c) Calculate the resulting utility for the action

3. Return MEU action
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The value of information

Idea: compute the value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth k
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute the expected value of information
= expected value of best action given the information

minus expected value of best action without information
Survey may say “oil in A” or “no oil in A”, prob. 0.5 each (given!)

= [0.5× value of “buy A” given “oil in A”
+ 0.5× value of “buy B” given “no oil in A”]
– 0

= (0.5× k/2) + (0.5× k/2)− 0 = k/2
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General formula

Current evidence E, current best action α
Possible action outcomes Si, potential new evidence Ej

EU(α|E) = max
a

Σi U(Si) P (Si|E, a)

Suppose we knew Ej = ejk, then we would choose αejk s.t.

EU(αejk|E,Ej = ejk) = max
a

Σi U(Si) P (Si|E, a, Ej = ejk)

Ej is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:

V PIE(Ej) =
(

Σk P (Ej = ejk|E)EU(αejk|E,Ej = ejk)
)

−EU(α|E)

(VPI = value of perfect information)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 9 29



Properties of VPI

Nonnegative — in expectation, not post hoc

∀ j, E V PIE(Ej) ≥ 0

Nonadditive—consider, e.g., obtaining Ej twice

V PIE(Ej, Ek) 6= V PIE(Ej) + V PIE(Ek)

Order-independent

V PIE(Ej, Ek) = V PIE(Ej)+V PIE,Ej
(Ek) = V PIE(Ek)+V PIE,Ek

(Ej)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
⇒ evidence-gathering becomes a sequential decision problem
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Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

P ( U | E )jP ( U | E )jP ( U | E )j

(a) (b) (c)

U U U

U  1U  2 U  2U  2 U  1U  1
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Information-gathering agent

def Information-Gathering-Agent( percept)

persistent: D, a decision network

integrate percept into D

j← the value that maximizes VPI (Ej )/Cost(Ej )

if VPI (Ej ) > Cost(Ej )

then return Request(Ej )

else return the best action from D
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Sequential decision+

Sequential decision problems: utilities depend on a sequence of deci-
sions; incorporating utilities, uncertainty and sensing; including search
and planning as special cases

Search

Planning Markov decision
problems (MDPs)

Decision−theoretic
       planning

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

(belief states)
explicit actions
and subgoals

MDP (Markov decision process): observable, stochastic environment
with a Markovian transition model and additive rewards
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MDP

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.10.1

Say, [Up, Up,Right, Right, Right] with probability 0.85 = 0.32768

States s ∈ S, actions a ∈ A
Model T (s, a, s′) ≡ P (s′|s, a) = probability that a in s leads to s′

Reward function R(s) (or R(s, a), R(s, a, s′))

=















−0.04 (small penalty) for nonterminal states
±1 for terminal states
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Solving MDPs

In search problems, the solution is to find an optimal sequence

In MDPs, the solution is to find an optimal policy π(s)
i.e., the best action for every possible state s
(because one can’t predict where one will end up)

The optimal policy maximizes (say) the expected sum of rewards

Optimal policy when state penalty R(s) (r in the picture) is −0.04:

1 2 3

1

2

3

− 1

+ 1

4
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Risk and reward

Two optimal policies in state (3, 1), and policies for four different
ranges of r
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Utility of state sequences

Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences

[r, r0, r1, r2, . . .] ≻ [r, r′0, r
′
1, r
′
2, . . .] ⇔ [r0, r1, r2, . . .] ≻ [r′0, r

′
1, r
′
2, . . .]

Theorem: there are only two ways to combine rewards over time
1) Additive utility function

U([s0, s1, s2, . . .]) = R(s0) +R(s1) +R(s2) + · · ·
2) Discounted utility function

U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where γ is the discount factor (describing the preference of an

agent for current rewards over future rewards)
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Utility of states

Utility of a state (aka. its value)
U(s) = expected (discounted) sum of rewards (until termination)

assuming optimal actions
Given the utilities of the states, choosing the best action is just MEU

maximize the expected utility of the immediate successors

1 2 3

1

2

3

− 1

+ 1

4

γ=1, higher for states closer to the exit +1
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Utility of states#

Problem: infinite lifetimes → additive utilities are infinite

1) Finite horizon: termination at a fixed time T
→ nonstationary policy: π(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any π
→ expected utility of every state is finite

3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . s∞]) = Σ∞t=0γ
tR(st) ≤ Rmax/(1− γ)

Smaller γ ⇒ shorter horizon

4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’s daily scheme cruising for passengers
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Bellman equation

Definition of the utility of states leads to a simple relationship among
utilities of neighboring states

expected sum of rewards
= current reward

+ γ× expected sum of rewards after taking best action

Bellman equation (1957)

U(s) = R(s) + γ max
a

Σs′U(s′)T (s, a, s′)

U(1, 1) = −0.04
+ γmax{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up

0.9U(1, 1) + 0.1U(1, 2), left

0.9U(1, 1) + 0.1U(2, 1), down

0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in n unknowns
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Value iteration algorithm

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman equation
Everywhere locally consistent ⇒ global optimality

Repeat for every s simultaneously until “no change”
— Bellman update

Ui+1(s)← max
a∈A(s)

∑

s′
P (s′ | s, a) [R (s, a, s′) + γUi (s

′)]
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Value iteration algorithm#

def Value-Iteration(mdp,ǫ)

inputs: mdp, an MDP with states S, actions A(s), transition

model P (s ′ | s , a), rewards R(s , a, s ′),discount γ

ǫ, the maximum error allowed in the utility of any state

local variables: U,U′, vectors of utilities for states in S, initially zero

δ, the maximum relative change in the utility of any state

repeat

U←U′;δ← 0

for each state s in S do

U′[s]←max a ∈ A(s) Bellman-Value(mdp, s , a,U )

until δ ≤ ǫ(1− γ) / γ

return U
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Convergence∗

Define the max-norm ||U || = maxs |U(s)|
so ||U − V || = maximum difference between U and V

Let U t and U t+1 be successive approximations to the true utility U

Theorem: For any two approximations U t and V t

||U t+1 − V t+1|| ≤ γ ||U t − V t||

I.e., any distinct approximations must get closer to each other
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal solution

Theorem: if ||U t+1 − U t|| < ǫ, then ||U t+1 − U || < 2ǫγ/(1− γ)
I.e., once the change in U t becomes small, we are almost done.

MEU policy using U t may be optimal long before convergence of
values
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Policy iteration

Howard (1960): search for an optimal policy and utility values simul-
taneously

Algorithm
π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π
update π as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed π (value determination)

U(s) = R(s) + γΣs′U(s′)T (s, π(s), s′), for all s

i.e., n simultaneous linear equations in n unknowns, solve in O(n3)

Note: Reinforcement learning algorithms operate by performing such
updates based on the observed transitions made in an initially un-
known environment
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Bandit problems+#

One-armed bandit (slot machine): a gambler can insert a coin, pull
the lever, and collect the winnings (if any)
n-armed (multi-armed) bandit: behind each of n (independent) lever
is a fixed but unknown probability distribution of winnings
Bernoulli bandit: each of n-armed produces a reward of 0 or 1 with a
fixed but unknown probability⇐ formal model of sequential decision

E.g., deciding which of n possible new treatments to try to cure
a disease

The tradeoff between exploitation (to get the machine the highest
expected payoff) and exploration (to get more information about the
expected payoffs of the other machines)
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Markov reward process

Defined each arm Mi as a Markov reward process (MRP): a special
MDP with only one possible action ai

– states Si

– transition model Pi (s
′ | s, ai)

– reward Ri (s, ai, s
′)

The arm defines a distribution over sequences of rewards Ri,0,
Ri,1, . . . (random variables)
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Example: two-arms bandit

Consider two arms M , M1, the discount factor γ = 0.5. Pulling arms
yield the sequences of rewards
M : 0, 2, 0, 7.2, 0, 0, . . .
M1: 1, 1, 1, 1, 1, 1, . . .

Utility (total discounted reward) for each arm
U(M) = (1.0× 0) + (0.5× 2) +

(

0.52 × 0
)

+
(

0.53 × 7.2
)

= 1.9
U (M1) =

∑∞
t=0 0.5

t = 2.0

Seem like the best choice is to go with M1. But starting with M
and then switching to M1 after the fourth reward gives the sequence
S =0, 2, 0, 7.2, 1, 1, 1, 1, 1, 1, . . .

U(S) = (1.0×0)+(0.5×2)+
(

0.52 × 0
)

+
(

0.53 × 7.2
)

+∑∞
t=4 0.5

t =
2.025

The strategy S is optimal: all other switching times give less reward
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One-arm bandit

Consider two arms M , Mλ, the discount factor γ, yielding the se-
quences of rewards
M : R0, R1, R2, . . .
Mλ: λ, λ, λ, . . . (constant)

Equivalent to one arm M that produces rewards R0, R1, R2, . . . and
cost λ for each pull

– pulling arm M is equivalent to not pulling Mλ, so it gives up a
reward of λ each time

Pull the first arm T times (0, 1, . . . , T − 1, the stopping time is T )

An optimal strategy is to run arm M up to time T and then switches
to Mλ for the rest of time

– if T = 0 then choosing Mλ immediately
– if T =∞ then never choosing Mλ
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Gittins index

Consider λ s.t. an optimal strategy is exactly indifferent (tipping
point) between

(a) running up to the best possible stopping time and then switch-
ing to Mλ forever, and

(b) choosing Mλ immediately

maxT>0E
[(

∑T−1
t=0 γtRt

)

+ ∑∞
t=T γ

tλ
]

= ∑∞
t=0 γ

tλ ⇐⇒

Theorem λ = maxT>0
E(∑T−1

t=0 γtRt)
E(∑T−1

t=0 γt)
(Gittins index of M)

Optimal policy for any bandit problem: pull the arm that has the
highest Gittins index, then update the Gittins indices

– computing the first Gittins index O(n) time
(index of arm depends only on the properties of that arm)
– computing each decision after the first one O(n)
(Gittins indices of arms that are not selected remain unchanged)
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Gittins index

For 0 < λ ≤ 1.0133, the optimal policy collects the first four rewards
from M and then switches to Mλ

For λ > 1.0133 , the optimal policy always chooses Mλ

Hint: Approximately optimal bandit policies are needed for more re-
alistic problems
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Gittins index

Consider each arm M of n-armed bandit at each state s, the agent
has two choices

either continue with as before, or quit and receive an infinite se-
quence of λ-rewards
⇒ turn M into an MDP

optimal policy is just the optimal stopping rule for M
equal to the value of an infinite sequence of λ-rewards
i.e., λ/(1− γ) — λ unknown

⇐ restart MDP
at the tipping point, the choice to get an infinite sequence of

λ-rewards = the choice to go back and restart from its initial state
s, a new MDP M s

solving M s by any of the MDP algorithms, say value itera-
tion, a value of 2.0266 for the start state

Have λ = 2.0266 · (1− γ) = 1.0133 as before

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 9 51



POMDP∗

POMDP (partially observable MDP has an observation model O(s, e)
defining the probability that the agent obtains evidence e when in
state s

Agent does not know which state it is in
→ makes no sense to talk about policy π(s)

Theorem (Astrom, 1965): the optimal policy in a POMDP is a
function π(b), where b is the belief state (probability distribution over
states)

Can convert a POMDP into an MDP in belief-state space, where
T (b, a, b′) is the probability that the new belief state is b′

given that the current belief state is b and the agent does a
I.e., essentially a filtering update step
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POMDP

Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector
→ solving POMDPs is very (actually, PSPACE-) hard

The real world is a POMDP (with initially unknown T and O)
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Decision theoretic planning∗

Planner designed in terms of probabilities and utilities in the decision
networks

– support a computationally tractable inference about plans and
partial plans

– numeric values to individual goals, but measures lack any precise
meaning

Using decision-theoretic planning allows designers to judge the effec-
tiveness of the planning system

– specify a utility function over the entire domain and rank the
plan results by desirability

– modular representations that separately specify preference in-
formation so as to allow a dynamic combination of relevant factors
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Multiagent systems∗

Multiagent systems (MAS): the environment contains multiple actors
• Multiagent planning
• Multiagent decision making
• Game theory

Cooperation and coordination
– Adopt a convention before engaging in joint activity
– – a convention is any constraint on the selection of joint plans
– Otherwise, agents can use communication to achieve common

knowledge of a feasible joint plan
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Multiagent planning

Issue: concurrency — the plans of each agent may be executed si-
multaneously

agents take into account the way in which their own actions in-
teract with the actions of other agents

Interleaved execution: the order of actions in the respective plans will
be preserved

True concurrency: not a full serialized ordering of the actions, leave
them partially ordered

Synchronization: there is a global clock that each agent has access
to

concurrent constraint stating which actions must (not) be exe-
cuted concurrently
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Multiagent decision making

Benevolent agent assumption: one decision maker plans for the other
agents, and tells them what to do

– require actors to synchronize their actions

Multiple decision-makers: the other actors (counterparts) are also
decision makers

– they each have preferences and choose and execute their own
plan

– all pursuing a common goal

Coordination: they are all pulling in the same direction
– the decision makers each pursue to the best of their abilities
⇐ game theory
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Game theory

Recall: Games as adversarial search
the solution is a strategy
specifying a move for every opponent reply, with limited resources

Game theory: decisions making with multiple agents in uncertain
environments

the solution is a policy (strategy profile) in which each player
adopts a rational strategy

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war
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A brief history of game theory#

• Competitive and cooperative human interactions (Huygens, Leib-
niz, 17BC)

• Equilibrium (Cournot 1838)

• Perfect play (Zermelo, 1913)

• Zero-sum game (Von Neumann, 1928)

• Theory of Games and Economic Behavior (Von Neumann 1944)

• Nash equilibrium (non-zero-sum games) (Nash 1950) (the 1994
Nobel Memorial Prize in Economics)

•Mechanism design theory (auctions) (Hurwicz 1973, along with
Maskin, and Myerson) (the 2007 Nobel Memorial Prize in Eco-
nomics)

Trading Agents Competition (TAC) (since 2001)
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Prisoner’s dilemma

Two burglars, Alice and Bob, are arrested and imprisoned. Each
prisoner is in solitary confinement with no means of communicating
with the other. A prosecutor lacks sufficient evidence to convict the
pair on the principal charge, and offers each a deal: if you testify
against your partner as the leader of a burglary ring, you’ll go free for
being the cooperative one, while your partner will serve 10 years in
prison. However, if you both testify against each other, you’ll both
get 5 years. Alice and Bob also know that if both refuse to testify
they will serve only 1 year each for the lesser charge of possessing
stolen property

should they testify or refuse??
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Prisoner’s dilemma

Single move game
• players: A, B
• actions: testify, refuse
• payoff (function): utility to each player for each combination

of actions by all the players
– for single-move games: payoff matrix (strategic form)
– A strategy profile is an assignment of a strategy to each player
– – pure strategy - deterministic

should they testify or refuse??
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Dominant strategy

A dominant strategy is a strategy that dominates all others
a strategy s for player p strongly dominates strategy s′ if the

outcome for s is better for p than the outcome for s′, for every choice
of strategies by the other player(s)

a strategy s weakly dominates s′ if s is better than s′ on at least
one strategy profile and no worse on any other

Note: it is rational to play a dominated strategy, and irrational not
to play a dominant strategy if one exists

– being rational, Alice chooses the dominant strategy
– being clever and rational, Alice knows: Bob’s dominant strategy

is also to testify
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Equilibrium

An outcome is Pareto optimal if there is no other outcome that all
players would prefer

An outcome is Pareto dominated by another outcome if all players
would prefer the other outcome

e.g., (testify, testify) is Pareto dominated by (−1,−1) out-
come of (refuse, refuse)

A strategy profile forms an equilibrium if no player can benefit by
switching strategies, given that every other player sticks with the
same strategy

– local optimum in the policy space

Dominant strategy equilibrium: the combination of those strategies,
when each player has a dominant strategy
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Nash equilibrium

Nash equilibrium (NE) theorem: every game has at least one equi-
librium

E.g., a dominant strategy equilibrium is a Nash equilibrium (in special
case, the converse does not hold — Why??)

NE is a necessary condition for a solution
– it is not always a sufficient condition

In the simple case, playing NE guarantees that the player will not win
in expectation

In complex games, determining how to tie against an NE may be
difficult

If the opponent ever chooses suboptimal actions, then playing NE will
result in victory in expectation
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Zero-sum games

Two-players general-sum game is represented by two payoff matrices
A=[aij] and A=[bij]

if aij = −bij, called zero-sum game
(games in which the sum of the payoffs is always zero)

Mixed strategy - a randomized policy that selects actions according
to a probability distribution

Maximin algorithm: a method for finding the optimal mixed strategy
for two-player, zero-sum games

– apply the standard minimax algorithm
Maximin equilibrium of the game, and it is an NE

von Neumann zero-sum theorem: every two-player zero-sum
game has a maximin equilibrium when you allow mixed strategies

NE in a zero-sum game is maximin for both players
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Algorithms for finding Nash Equilibria

1. Input: a support profile

2. Enumerate all possible subsets of actions that might form mixed
strategies

3. For each strategy profile enumerated in (2), check to see if it is
an equilibrium

– Solving a set of equations and inequalities. For two players
these equations are linear (and can be solved with basic linear pro-
gramming); for n-players they are nonlinear

4. Output: an NE

Note: polynomial-time algorithms exist for special classes, such as
two-player zero-sum games (three or more players NP-hard). For
two-player non-zero-sum games, no polynomial-time (approximate)
algorithm is known for finding an NE (PPAD-complete)
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Other games∗

Repeated games: players face the same choice repeatedly, but each
time with knowledge of the history of all players? previous choices

E.g., the repeated version of the prisoner’s dilemma

Sequential games: games consist of a sequence of turns that need
not be all the same

– can be represented by a game tree (extensive form)
– add a distinguished player, chance, to represent stochastic games,

specified as a probability distribution over actions

Bayes-Nash equilibrium: an equilibrium w.r.t. a player’s prior proba-
bility distribution over the other players’ strategies

Consider the other players are less than fully rational

Now, the most complete representations: partially observable, multi-
agent, stochastic, sequential, dynamic environments
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Regret minimization∗

Regret measures as the value of the difference between a made deci-
sion and the optimal decision

the regret for a sequence of strategies sa consisting of always
choosing action a would be, where T is the number of iterations

rT (sa) =
T
∑

t=1

(

vt(a)− vt
)

For an algorithm to be no-regret, it must choose strategies in a way
that guarantees that the reget value grows sublinearly for the optimal
strategies
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Counterfactual regret minimization∗

Counterfactual regret minimization (CFR) for sequential games inde-
pendently minimizes regret in each information set (state space)

– Vanilla CFR requires full traversals of the game tree, Monte
Carlo CFR (MCCFR) needs only a portion of the tree to be traversed

– Regret-based pruning (RBP) prunes negative-regret actions from
the tree traversal to speed it up

Variants of CFR (such as discounted or linear CFR) are the leading
equilibrium-finding algorithm for imperfect-information games
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Regret matching∗

Minimax regret (i.e., minimax applied to regret) is to minimize the
worst-case regret
Regret matching (RM) is a no-regret learning algorithm — the prob
of an action is proportional to the positive regret on that action

on each iteration t + 1, action a ∈ A is selected according to
probabilities

σt+1(a) =
rt+(a)

∑

a′∈A rt+ (a′)

where rt+(a) = max {0, rt(a)}

Theorem: When both players in a two-player zero-sum game use a
no-regret learning algorithm, the average of the strategies played over
all iterations converges to an NE
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Counterfactual regret minimization algorithm∗

def CFR(h,i,t,π1,π2) // with chance sampling

persistent: I, the information set containing history h

A, the set of actions

r,s,σ, the tables of regret,stratgy,profile

∀ I , rI [a]← 0 // Initialize cumulative regret tables

∀ I , sI [a]← 0 // Initialize cumulative strategy tables

σ1(I , a)← 1/|A(I )| // Initialize initial profile

vσ← 0 // Regret values for the profile σ

vσI→a
[a]← 0 // For all a ∈ A(I )

if h is terminal then return ui(h)

else if h is a chance node then

Sample a single outcome a ∼ σc(h, a)

return CFR (h.a, i , t , π1 , π2 )
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Counterfactual regret minimization algorithm∗

for a ∈ A(I ) do

if P(h) = 1 then

vσI→ a
[a]←CFR (h.a, i , t , σt(I , a) · π1 , π2 )

else if P(h) = 2 then

vσI→ a
[a]←CFR (h.a, i , t , π1 , σ

t(I , a) · π2 )

vσ← vσ + σt(I , a) · vσI→a
[a]

if P(h) = i then

for a ∈ A(I ) do

r I [a]← r I [a] + π−i ·
(

vσI→ a
[a]− vσ

)

s I [a]← s I [a] + πi · σ
t(I , a)

σt+1 (I )← regret-matching values computed by regret table rI
return vσ
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Example: Libratus

Recall: Imperfect information games
Porker: surpass human experts in the game of heads-up no-limit

Texas hold’em, which has over 10160 decision points

Libratus: two-ply heads-up no-limit Texas hold’em poker
• Depended on game theory
– NE-finding algorithms based on CFR
– Information and action abstraction for similarity of subgame
• Did not depend on deep learning
– Except for Deep CFR (NN for computing CFR)
– Outperform deep learning-based DeepStack
– AlphaZero can not win Texas hold’em

ReBel (2020): achieved superhuman performance in heads-up no-
limit in 2020, extended AlphaZero by Nash equilibrium (with knowl-
edge)
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Example: DeepNash∗

Stratego: 10535 states, larger than Texas hold’em (10175 times larger
than Go)

– actions with no obvious link between action and outcome
– can not be broken down into sub-problems as in poker
– impossible to use AlphaGo-like or Libratus-like algorithms
– challenge all existing search techniques as the search space be-

comes intractable

DeepNash used an evolutionary (equivalent to reinforcement learning)
game theory, without search, via self-play

– got up to a human expert level

R-NaD (Regularised Nash Dynamics) algorithm: converge to an (ap-
proximate) ǫ-Nash equilibrium

implemented using a deep convolutional network
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Auctions∗

Auction: a mechanism design for selling some goods to members of
a pool of bidders

– inverse game theory
Given that agents pick rational strategies, what game should we

design? e.g., cheap airline tickets
Ascending-bid (English auction)

1. The center starts by asking for a minimum (or reserve) bid
2. If some bidder is willing to pay that amount, then asks for

some increment, and continues up from there
3. End when nobody is willing to bid anymore, then the last bidder

wins the item
Auction design (e.g., efficiency) and implementation (algorithm)
Inverse auction

Given that the center picks a rational strategy, what game should
we design?
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